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ABSTRACT

Statistical downscaling is a mature field with many applications in different socioeconomic sectors
—such as hydrology— which require local weather data. Standard downscaling methods rely on long
historical records (tens of years) typically associated with sparse networks of low spatial resolution
(e.g. the SYNOP network). Thus, these methods are not suitable for modern station networks
with shorter temporal coverage (years) and, typically, higher spatial resolution. In this paper, we
present a new technique to combine both sources of information into a single downscaling model,
connecting the modern to the historical stations in a hierarchical way, thus avoiding overfiting. To
this aim we use Bayesian networks to graphically represent the variables and their dependencies
defining an underlying joint probabilistic model; we introduce a new automatic learning algorithm
method to infer the model with an appropriate hierarchy from data. The resulting model is shown
to improve the results of other state of the art methods, such as the Näıve model or a simple nearest
neighbors method. In particular we consider precipitation occurrence and focus on probabilistic
weather-typing downscaling techniques.

1. Introduction

During the last two decades a variety of statistical down-
scaling methods have been introduced in the literature (see,
e.g. Wilby and Wigley 1997; Benestad et al. 2008, and ref-
erences therein). Statistical downscaling methods work by
projecting the upper-air large-scale circulation fields pre-
dicted by some Global Circulation Model (GCM) down to
some surface local variable of interest; among these vari-
ables, precipitation is still one of the most challenging due
to its mixed nature (occurrence and amount) and its non-
gaussian character. Thus, many downscaling methods have
been tuned and adapted to donwscale precipitation occur-
rence, providing a probability for this binary event. Some
of these methods treat individually each particular station
(single-site), and others work collectively with all the avail-
able stations (multi-site). In the later case, the spatial
coherence of inter-station correlation must be preserved in
the downscaled, thus imposing additional constraints to the
downscaling methods (see, e.g., Harpham and Wilby 2005,
and references therein). Multi-site methods are needed in
hydrological applications in order to obtain the right ag-
gregated values, e.g. the appropriate runoff amounts.

The enlargement of terrestrial observation systems with
modern networks —typically with high spatial resolution—

(Zepeda-Arce et al. 2000; Janis et al. 2004) poses new chal-
lenges for statistical downscaling, since standard methods
rely on historical networks with long records (tens of years).
Among the problems to be avoided, overfiting and loss of
generalization play a central role, since the model param-
eters must be trained with only a few data (e.g. for a
weather-type conditioned regression model) and the infer-
ence made on the basis of a few instances may not gen-
eralize to other situations (e.g. for the analog or weather
typing approaches).

In this paper we present a new weather-typing tech-
nique to overcome these problems by combining both mod-
ern and historical networks into a single probabilistic down-
scaling model. The key idea is connecting all the available
information (the modern stations, the historical ones and
the weather types) in a hierarchical way. In the resulting
model, connections from the weather type variable will be
typically established with historical stations (based on long
time records) and, in turn, historical stations will be con-
nected with modern ones, thus indirectly transferring the
information from the weather type; as we shall see later,
the different parameters of the model correspond to local
probabilities (from a reduced set of stations) and, thus,
can be trained with the different time-slices of the avail-
able data in an optimum way avoiding overfiting. To this
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aim we use Bayesian networks to graphically represent the
variables and their hierarchical dependencies, defining an
underlying joint probabilistic model which can be used for
probabilistic inference (e.g. downscaling, when providing
the weather type as evidence). We introduce a new auto-
matic learning algorithm to infer the model from data with
an appropriate hierarchy, building on existing learning al-
gorithms and taking advantage of the spatial character of
the problem (see, e.g. Friedman et al. 1999; Cano et al.
2004, for an introduction of statistical learning in this con-
text). The resulting model is shown to improve the results
of other state of the art methods, such as the Näıve model
or a simple nearest neighbors method.

The paper is organized as follows. First, in Sec. 2, we
describe the area of the study and data used in this work.
In Section 3 we introduce the probabilistic network models
(in particular Bayesian networks) as a suitable data min-
ing tool for meteorological applications, focusing on the
probabilistic downscaling problem. Then, in Sec. 4 we
present the proposed downscaling method (the H2 down-
scaling algorithm) and give some comparison results with
other benchmark methods. Finally, in sec. 5, some conclu-
sions are reported.

2. Area of Study and Data

The Cantabric coast is a region of complex orography
and Atlantic climate located in Northern Spain (see Fig.
ba). In this region we consider a total of 42 quality con-
trolled rain gauges (see Table 1) maintained by the Spanish
Met Service (Agencia Estatal de Meteoroloǵıa, AEMET)
covering different time-slices of the period 1957-2002 (the
ERA40 reanalysis period). On the one hand the twelve
stations shown as crosses in Fig. bc are historical stations
with a common observation record of over 25 years (9860
days) with no missing data. On the other hand, the thirty
stations marked with open circles in Fig. bc correspond
to recent stations with a shorter record (4816 days, corre-
sponding to 13 years). We analyze binary events associated
with two different precipitation thresholds precip > 0mm
and precip > 10mm (the frequency of these events for the
different stations is shown in Table 1).

In the different experiments performed in the paper,
a test period of approximately 4 years (1445 days) was
randomly selected over the common 13 years period and
removed from the data used to train the different models,
keeping 8415 days (21 years) and 3371 days (9 years) for
training the historical and recent stations, respectively. In
the later case, as an additional experiment, the training
period has been reduced to 337 days (1 year) in order to
analyze the overfiting effects that may arise when using
very recent stations. Thus, we shall explore the limits of
the proposed methodology to include new stations (with
data between 9 and 1 years) in the downscaling process.
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Fig. 1. (a) Region of study in Nothern Iberian Penin-
sula: the Cantabric coast (inner square). (b) Orography of
the region and ERA40 reanalysis grid points (black solid
points). (c) Historical (crosses) and recent (open circles)
stations used in the study.

In order to define the atmospheric state to be used as
predictor for the downscaling process, we use data from the
Reanalysis ERA40 project (Uppala and others 2005), from
the European Center for Medium-Range Weather Forecast
(ECMWF). Following the indications of (Guti´rrez et al.
2004) we considered the meso-scale domain defined by the
12 black solid points in Fig. bb, in three levels 1000, 850
and 500 hPa. For each day of the ERA40 period (1957-
2002), the corresponding atmospheric pattern is formed by
the temperature, geopotential, North and East wind com-
ponents and humidity fields, resulting a vector with 150
components. In this paper we consider a weather typing
approach so we applied the k-means clustering method to
the daily atmospheric vectors in the reanalysis space, ob-
taining a single discrete scalar weather type Ck, with k dif-
ferent states (see Guti´rrez et al. 2004, for more details). In
order to analyze the sensitivity of the downscaling results
to the resolution of the weather types (number of weather
types), we have considered both a low resolution weather
type with only k = 10 classes, and a mid resolution one
with k = 100 classes (higher resolution weather types with
k > 100 classes have been for short-range downscaling, but
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the series available in this work are not long enough to
properly fit the resulting models).

3. Bayesian Networks

Bayesian networks (BNs) is a popular, sound and intu-
itive methodology which allows building probabilistic mod-
els from data in problems with a large number of variables
(Castillo et al. 1997). This is done by considering only the
relevant dependencies or associations among the variables.
The basic idea of BNs is to encode these dependencies using
a graphical representation (a directed acyclic graph) which
is easy to understand and interpret (see Fig. 2 for some
examples). The graph includes a node for each variable
(in this case, the different stations and an extra variable
for the weather-type representing the state of the atmo-
sphere), and edges connecting variables which are directly
dependent on each other. Every graph defines a decomposi-
tion of the high-dimensional Joint Probability Distribution
(JPD) into a product of low-dimensional local distributions
(marginal or conditional) as follows:

P (y1, ..., yn) =

n∏

i=1

P (yi|πi), (1)

where each Yi is a variable in the model, and Πi are the
parents of Yi, i.e. the subset of variables whose edges are
pointing directly to Yi. Therefore, the independencies from
the graph are easily translated into the probabilistic model
in a sound and intuitive form. In this paper we shall con-
sider Y = {X1, . . . , Xn, C}, where Xi represent precipi-
tation occurrence at the different stations and C is the
weather-type variable defined in Sec. 2.

Learning Bayesian networks from data is a hard task,
since the number of different models is exponential in the
number of variables (Neapolitan 2003); therefore, different
learning algorithms have been proposed in the literature
to solve this problem from different points of view. One of
the most popular approaches is the so-called search-and-

score, where a search algorithm (in the space of feasible
graphs) is used in conjunction with a scoring criterion to
evaluate the fit of candidate models to the available data.
When a good graph is identified, the parameters of the
corresponding JPD in (1) are estimated from data in a
straightforward way. Two popular search methods are the
K2 and B greedy algorithms, and a common score metric
is the Minimum Description Length (MDL), which con-
siders the likelihood of the data and a penalty term for
model complexity, thus benefiting models with a simpler
description of the data (see Neapolitan 2003, for details).
In this paper we consider an alternative goal-oriented score
metric, the ROC Skill Area (Jolliffe and Stephenson 2003),
which allows evaluating the skill of the resulting model to
predict the precipitation occurrence, p(yi|c), based on the
weather-type variable state. This score metric has been

already used to learn classifiers from data.
Different applications of Bayesian networks have been

presented in the literature; for instance Abramson et al.
(1996) describes an application for hail forecasting, Ken-
nett et al. (2001) for sea breeze forecasting, and Hruschka
and Ebecken (2005) for fog prediction. These studies are
focused on a single site and consider the local forecast as a
unidimensional problem. However, the collective behaviour
of different sites is a key factor in hydrological applications,
where the prediction for total basin precipitation is an ag-
gregation of the different local predictions. In a recent work
Cano et al. (2004) have shown that Bayesian networks are
also sound and convenient models for multi-site standard
applications for downscaling and local prediction, provid-
ing probabilistic models with spatial consistency able to
simulate the collective behaviour of different stations. In
this paper we consider the multi-dimensional focus of this
problem, introducing the BN as a joint model to forecast
all the locations preserving the spatial consistency at the
same time.

a. Downscaling with Bayesian Networks

Following the work by Cano et al. (2004) we apply
Bayesian networks to build a multivariate model includ-
ing the dependencies among precipitation occurrence for
the set of stations Xi shown in Fig. b. Moreover, we also
consider the weather-type C described in Sec. 2 as an ad-
ditional variable, to be used as evidence (known value) for
downscaling purposes. Therefore, depending on type of
graph (dependency model) considered, the Bayesian net-
work can be seen as a particular multi-site weather-typing
probabilistic downscaling technique. The simplest Bayesian
network structure is the Näıve Bayes, where the weather-
type variable is the only parent of all the stations, as shown
in Fig. 2(a). This model is based on the assumption that
the stations X1, ..., Xn, are conditionally independent given
the weather-type value C:

I(Xi, Xj |C) ∀i, j (2)

Thus, the corresponding JPD can be factorized as:

P (x1, ..., xn, c) = P (c)

n∏

i=1

P (xi | c). (3)

Therefore, the performance of the Näıve model for a
particular application will depend on whether the differ-
ent variables meet the assumptions given in (2). Note that
this can be tested by considering, e.g., the conditional mu-
tual information of each pair of stations for each particular
weather-type state: MI(Xi, Xj |C). Figure 3 illustrates
behavior of the Näıve model for the case analyzed in this
paper, considering the stations shown in Fig. b(c). The
value of the conditional mutual information for each pair
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Fig. 2. Examples of three different directed acyclic graphs with a weather-type variable C and n stations Xi corresponding to:
(a) A Näıve model with no direct dependencies among the stations, (b) an augmented model, obtained including additional links
to the Näıve model, and (c) an unrestricted model with arbitrary dependencies.

of stations is plotted versus the distance between them,
represented as Xi||Xj . This figure shows an exponential
decay of the mutual information as time increases; thus,
the the Näıve model is only appropriate in sparse networks
with long inter-station distances (200 km in this example,
if we consider a threshold of 0.1 for the mutual informa-
tion). According to this, the figure has been divided into
four areas depending on whether MI(Xi, Xj |C) > 0.1 and
Xi||Xj > 200km. Thus, in the upper left area the stations
are conditional dependency (labelled with crosses), whereas
in the lower right area they are conditional independency
(labelled with solid points). Therefore, the Näıve model
could be appropriate for the historical stations (with low
spatial resolution), but not for the modern stations with a
higher resolution and small inter-site distances.

Since the forecast skill of the Näıve model relies only on
the weather type variable, we can conclude that the Näıve
model hypothesis is appropriate only in cases where the
atmospheric model has higher spatial resolution than the
observations; for instance, this is what happens with low
resolution observation networks (which corresponds with
solid points in Fig. 3). However, if the observed variability
is higher than the atmospheric model resolution, then (2)
is not meet and, thus, the Näıve model does not properly
represent all the relevant dependencies among stations (see
crosses in Fig. 3).

In spite of its simplicity, the Näıve model have shown
a good performance compared with more complex models
(see, e.g. Zhang et al. 2005). Therefore, the structure of
this model has been taken as the basis to build Augmented
Näıve models taking into account the spatial dependency
among stations (see e.g. Fig. 2b). Examples of this are
the Selective Bayesian Classifiers (SBC) proposed by Lan-
gley and Sage (1994), the Tree Augmented Bayesian Class-

sifers (TAN) proposed by Friedman et al. (1997), the Ag-
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Fig. 3. Conditional mutual information between pairs of lo-
cations as a function of their distance for the occurrence of
precipitation.

gregating One-Dependence Estimators (AODE) from Webb
et al. (2005), or Langseth and Nielsen (2006), wich uses
Hierarchical Näıve classifers adding latent variables to the
attributes, among others. Using Bayesian networks it is
also possible to consider general unrestricted models where
all the variables (stations and weather-type) are treated
in equal conditions and the more relevant dependencies
among them are considered (see Fig. 2c).

These models can be used in different ways depending
on the evidence and target variables. On the one hand,
they work as a classifier when the evidences are the stations
X (or a particular subset Z ⊂ X), and the target is the
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weather-type variable C, so the goal is to estimate p(c|z).
On the other hand, they work as a downscaling model when
the evidence is the weather-type C and the targets are the
stations; in this case the goal is computing p(z|c) or, more
simply, p(xi|c), for some i.

4. Downscaling Modern Networks with Short His-
torical Records

A common situation in many regional impact studies
is the co-existence of sparse networks with long histori-
cal records (a few stations over the area of study) and a
high-resolution network of newer stations with short his-
torical records (typically one or two years). In this case,
even the simplest Näıve model can be overfitted to data
since the number of parameters in (3) is conditioned by the
weather-type, which may have up to 100 states in practical
applications. In this case, due to the heterogeneity of the
available data, a generic structure with no pre-impossed
dependencies (Fig. 2c) would lead to optimal models, pe-
nalizing those connections leading to a high number of pa-
rameters with poor prediction capabilities (e.g. links from
the weather type to the newer stations).

The overfitting problem is illustrated in Fig. 4, which
shows the validation scores over the test sample (described
in sec. 2) for a Näıve model trained on the stations shown
in Fig. b, but considering a common training period rang-
ing from 1 to 10 years. In this case we can use standard
validation techniques derived from ‘hit’ and ‘false alarm’
rates for the validation of the forecasts. Relative Operating
Characteristic (ROC) curves and ROC Skill Areas (RSA)
provide a global description of the skill of the method (see
Jolliffe and Stephenson 2003, for an overview of validation
for probabilistic forecasts).

The poor scores obtained up to 5 years in this case are
due to the overfitting of parameters to the trainning data.
Thus, in this example, we would need stations with at least
5 years of data in order to perform a robust statistical
downscaling of the occurrence event with a Näıve model.
Note that for more extreme events the period would in-
crease (Jagannathan and Arlqy 1967). Therefore, to build
models considering both historical and modern stations we
need a simpler model build on the results of the Näıve
hypothesis violation shown in Fig. 3. In the following
section, we describe the H2 algorithm, a hierarchical al-
gorithm where connections from the weather type variable
will be typically established with historical stations (based
on long time records) and, in turn, historical stations will
be connected with modern ones, thus indirectly transfer-
ring the information from the weather type. The opti-
mal structure for a particular application is inferred from
data, thus providing an efficient downscaling methods that
takes into account the particular restrictions imposed by
the available dataset.
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Fig. 4. Marginal quality (in RSA units) evolution of the Näıve
model, showing overfitting effects for train lengths up to 10
years, using a C100 predictor for the prec > 10mm/24h binary
event. For every train length, each boxplot refers to 10 ran-
domly selected train/test sets.

a. The H2 Algorithm

Let us consider a Näıve model, as defined in Fig. 2a
with the binary variables X and the 100 state weather-type
variable C100, and let us divide the stations in two sets
X = {XΩ,XΦ} corresponding to the long historical sta-
tions and the newer ones with short records, respectively,
as described in Sec. 2. Note that each connection from
C to Xi involves a large number of parameters due to the
100 different states of C (note that Xi are binary variables
corresponding to the occurrence of precipitation in station
i), whereas connections of the type Xi to Xj involve just
two, since both variables are binary. In principle, the first
connections would be only suitable for historical stations
with long records, whereas the last one would be appro-
priate to connect new to historical stations; in this way
older gauges would act as ‘decoders’ of the weather-types
for the new ones. In this way the resulting model would
avoid overfitting, combining all the heterogeneous available
information into a single global model, allowing us to ob-
tain downscaled values in a general framework. This is the
idea that motivates the creation of H2 algorithm described
as follows:

1 The initial network B is a Näıve model, formed by C
as the only parent of every Xi ∈ XΩ; note that the
modern stations XΦ are disconnected.

2 Iterate 3-5 until no quality improvement is achieved:

3 Calculate the set of “candidate links”, as those from
nodes with at least one parent to stations in XΦ

without children and no more than two parents (this
constraint on the maximum number of parents could
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be relaxed, or even removed, depending on the appli-
cation).

4 For every candidate link, evaluate the quality of the net-
work B′ obtained by adding the link to the current
network B using RSA(Xi) = f(PB′(xi|c)); note that
the marginal RSA value is used in this example, al-
though other metrics can be used instead.

5 Update the current network B by including the candi-
date link leading to a maximum quality increment:
B ← B′.

The limitation to a maximum of two parents have demon-
strated to be be a good compromise between having a sim-
ple model (reducing the parameters) and a good perfor-
mance. Note that links to modern stations which already
have a child are forbidden because it means that they have
been improved at least once, avoiding an unnecessary com-
plex algorithm (a pseudo-code of the algorithm is included
below). The name of the algorithm H2 indicates the divi-
sion in two different sets (historical and modern) to build
the hierarchy (H) of the graph; note that a generalization
of this algorithm to larger hierarchies is possible.

Algorithm 1 H2 Structural learning algorithm.

Require: A sample of data, divided into three groups
D = {C,XΩ,XΦ}, where Ω = {2, ..., m} refers to
the potential parents and Φ = {m + 1, ..., n}, refers to
the potential sons, being C the weather type variable.
The initial graph is defined by the adjacency matrix B:
B(1, j) = 1 ∀j ∈ Ω. The maximum number of parents
per node is fixed as r.

1: while Φ 6= ∅ do
2: for i ∈ Φ do
3: S = score(D, B); k = ∅;
4: for j ∈ Ω do
5: if acyclic(B ∪ {j → i}) = 1 then
6: M = score(D, B ∪ {j → i});
7: ifM > S; then S = M ; k = j; endif
8: end if
9: end for

10: if k 6= ∅ then
11: B(k, i) = 1;
12: Ω = {j ∈ [2, n] : πj 6= ∅};
13: Φ = {i ∈ [m + 1, n] : children(i) = ∅ ∧ ♯(πi) ≤

r};
14: else

Φ = {Φ\{i}};
15: end if
16: end for
17: end while
Ensure: A directed acyclic graph B and his quality mea-

sure S.

Fig. 5 shows a graphical illustration of the H2 algo-
rithm. At each step of the algorithm there are three types
of nodes: The weather type C, in black, the predictors

(initially the historical stations), in gray, and the predic-

tands (initially the modern stations) in white, which can
receive links. There are also two types of links, the black
ones with 100 parameters and the red ones with 2 param-
eters. In each iteration of the H2 algorithm, m × (n −m)
RSA different values must be computed, where m are the
predictands with parent, and (n−m) are the predictands
without children and no more than two parents. Note that
this number can be reduced using a local search criterion
(see Friedman et al. 1999).

Step 1

C100
8415 X2

8415 X2
337

100 parameters link 2 parameters link

End

Types of nodes

Types of links

INIT

Fig. 5. Graphical illustration of the H2 algorithm showing the
initial state (INIT) and the available predictors at two different
illustrative steps (after the first iteration and after the final
one). The super and sub-indices of the types of nodes show
the number of states and the size of the data available for the
particular node, respectively.

Thus, in contrast to Näıve models, the resulting H2

models explicitly include spatial relationships among the
different stations which are not implicitly given by the
weather type. Note that in the Näıve model the spatial
consistency is only captured trough the weather type vari-
able.

b. Results and Comparison with Benchmark Methods

In this section we describe the results obtained when
applying the above algorithm to the data described in Sec.
2. To this aim, we consider the historical (crosses) and
modern (open circles) stations shown in Fig. and apply
the algorithm to the available data, considering different
training subsets, from 1 to 10 years (the validation subset
is kept constant in all the cases). The models are obtained
using the training subset of the data, whereas the result-
ing models are validated using the test subset (the average
of the RSA values of the different stations is used as the
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validation score). Fig. 6 shows the H2 model obtained for
the case precip > 10mm and Figures 7(a) and (b) show
the resulting RSA values for the case of a weather type
with 10 and 100 states, respectively (red boxes); note that
higher RSA values are obtained with a weather type with
100 possible states (100 different atmospheric configura-
tions) and no overfitting is observed for those case with
shorter training dataset. The results are similar for the
prec > 0mm/24h event, so they are not shown in the fol-
lowing.

With the aim of comparing the obtained results with
other benchmark methods, we have also considered the
Näıve model, and a nearest neighbors interpolation pro-
cedure. Downscaling interpolation models attempt to ob-
tain estimates of probability at locations where predictions
are not available, as a function of predictions available in
other nearby locations (see Wilby and Wigley 1997, and
references therein for more details). We have used a simple
interpolation model that consists of estimating the prob-
ability of every modern station as the average of the pre-
dicted probabilities in ωi, where ωi is a subset of Ω with the
three nearest historical stations; note that more complex
interpolation models, considering different weights, could
be considered but this is beyond the scope of this paper.
The results for these two methods are also given in Figures
7(a) and (b) in blue and black colors, respectively. Note
that the Näıve model has slightly better results when con-
sidering only 10 weather types. However, in the case of
100 weather types the Näıve model severely suffers from
the overfitting problem and is only able to reach the per-
formance of the H2 algorithm in the case of long training
series. In this case, the H2 algorithm always outperforms
the interpolation method.

Table 1 shows the individual RSA of the different sta-
tions obtained with the Näıve(N1) and H2 (H21) models
for the first random realization of the case with 100 weather
types and 1 year of training data (the case with worst pos-
sible overfitting). As expected, there are no changes in the
12 historical gauge stations; however, for the 30 modern
stations, the model H2 exhibits higher RSA values than
the Näıve model. For the sake of comparison, a third col-
umn corresponding to the results with the long training
series (10 years) is also shown under the label N10. ES-
PINAMA location has been highlighted because improve-
ments are not as good as in other locations, probably due
to the very complex orography nearby (it is located in a
very deep valley).

Finally, Fig. 8 shows the individual results for the 30
modern stations. It can be seen that although the interpo-
lation and H2 models have similar averaged performance
(see Fig. 7), the situation is different when analyzing the
results station by station. In particular, as shown in Fig.
8, there are some modern stations where H2is clearly bet-
ter; these stations correspond to areas with high climatic

variability, where the interpolation method cannot capture
the local properties from the neighbors.

5. Conclusions

In this paper we have proved the potential of mod-
ern statistical learning techniques (Bayesian networks) to
downscale heterogeneous networks with historical and mod-
ern gauges characterized by long and short historical records,
respectively. Bayesian networks are able to globally model
all the available information (stations and weather type) by
inferring a joint probability distribution from data, taking
into account the sparse dependency structure among sta-
tions. We analyzed the case of binary events (occurrence of
precipitation considering two different thresholds), but this
methodology can be generalized for the continuous case
of precipitation amounts using, for instance, conditional-
gamma Bayesian networks (see, e.g. Cowell 2006).

We have shown that Näıve models are the best models
for individual probabilistic downscaling when the length
of the series is long enough to prevent overfitting or when
the observed resolution is lower than the modeled resolu-
tion (the one encoded within the weather types); in this
case, the spatial dependency among the stations is implic-
itly captured from the weather type, yielding to the inde-
pendence of each pair of stations given the weather type
(Naive assumption). However, in cases with both histori-
cal and modern stations with short and long records and
low and high spatial resolution, respectively, Näıve mod-
els are not appropriate and more elaborated models based
on Bayesian networks can be learnt from data. In partic-
ular we present a hierarchical method (the H2 algorithm)
where the connections from the weather type variable are
typically established with historical stations (based on long
time records) and, in turn, historical stations are connected
with modern ones, thus indirectly transferring the informa-
tion from the weather type; we have shown that the differ-
ent parameters of the model correspond to local probabili-
ties (from a reduced set of stations) and, thus, they can be
trained with the different time-slices of the available data
in an optimum way avoiding overfiting.

These experimental results show that this model pro-
vides significantly better results than the Näıve and sim-
ple interpolation methods, concluding that the purposed
methodology is skillful enough to allow incorporating mod-
ern stations into operational downscaling with only one
year of available daily data.
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Rodŕıguez, 2004: Clustering methods for statistical
downscaling in short-range weather forecast. Monthly

Weather Review, 132 (9), 2169–2183.

Harpham, C. and R. Wilby, 2005: Multi-site downscaling of
heavy daily precipitation occurrence and amounts. 312,
235–255.

Hruschka, E. and N. Ebecken, 2005: Applying bayesian
networks for meteorological data mining. Applications

and Innovations in Intelligent Systems XIII, Springer-
Verlag, 122–133.

Jagannathan, P. and R. Arlqy, 1967: A note on climato-
logical normals. Tech. Rep. 84-208, W.M.O.

Janis, M., K. Hubbard, and K. Redmond, 2004: Sta-
tion density strategy for monitoring long-term climatic
change in the contiguous united states. 17, 151–162.

Jolliffe, I. and D. Stephenson, 2003: Forecast Verification:

A Practitioner’s Guide in Atmospheric Science. John
Wiley and Sons.

Kennett, R., K. Korb, and A. Nicholson, 2001: Seabreeze
prediction using bayesian networks. 2035, 1611–3349.

Langley, P. and S. Sage, 1994: Induction of selective
bayesian classifiers. Procedings of Uncertainty in Arti-

ficial Intelligence, Morgan Kaufmann, 400–406.

Langseth, H. and T. D. Nielsen, 2006: Classification using
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p > 0 p > 10 Location N1 H21 N10

0.52 0.16 FUENTERRABIA ’AEROPUERTO’ 0.80 0.80 0.77
0.58 0.15 SAN SEBASTIAN ’IGUELDO’ 0.73 0.73 0.70
0.39 0.18 ELDUAYEN 0.75 0.75 0.70
0.32 0.10 AMURRIO ’INSTITUTO’ 0.76 0.76 0.72
0.54 0.11 BILBAO ’AEROPUERTO’ 0.80 0.80 0.76
0.49 0.14 EL MERCADILLO DE LIERGANES 0.75 0.75 0.71
0.41 0.14 VILLACARRIEDO 0.78 0.78 0.73
0.46 0.09 ROZADIO 0.79 0.79 0.77
0.53 0.10 RANON ’AEROPUERTO’ 0.73 0.73 0.76
0.37 0.13 RIOSECO DE SOBRESCOBIO 0.75 0.75 0.81
0.54 0.08 OVIEDO ’EL CRISTO’ 0.71 0.71 0.74
0.49 0.11 ZARDAIN 0.75 0.75 0.78

0.50 0.16 SAN SEBASTIAN ’ATEGORRIETA’ 0.40 0.64 0.58
0.49 0.16 LASARTE ’MICHELIN’ 0.42 0.68 0.69
0.50 0.14 EIBAR ’BANCO DE PRUEBAS’ 0.40 0.78 0.73
0.56 0.14 ECHEVARRIA 0.46 0.78 0.73
0.44 0.14 ABADIANO ’MENDIOLA’ 0.44 0.80 0.73
0.37 0.13 DURANGO ’VIVERO’ 0.36 0.75 0.68
0.39 0.14 GURIEZO ’G.C.’ 0.38 0.75 0.77
0.40 0.12 CARRANZA 0.46 0.75 0.76
0.49 0.13 COTERILLO DE AMPUERO 0.45 0.80 0.81
0.54 0.18 MIRONES 0.55 0.80 0.70
0.56 0.11 SANTANDER ’CENTRO’ 0.33 0.72 0.72
0.44 0.13 ESCOBEDO DE VILLAFUFRE 0.32 0.69 0.64
0.47 0.11 TORRELAVEGA ’SNIACE’ 0.31 0.79 0.77
0.55 0.10 CELIS 0.39 0.79 0.79
0.46 0.11 CAMIJANES 0.41 0.68 0.76
0.34 0.09 ESPINAMA 0.33 0.30 0.66

0.35 0.05 TAMA 0.46 0.61 0.81
0.42 0.16 AMIEVA 0.37 0.69 0.72
0.40 0.09 CANGAS DE ONIS 0.35 0.69 0.77
0.41 0.10 RIBADESELLA ’FARO’ 0.39 0.71 0.77
0.52 0.08 GIJON 0.27 0.70 0.79
0.31 0.13 BEZANES 0.26 0.64 0.66
0.47 0.09 SOTO DE RIBERA 0.37 0.72 0.78
0.47 0.09 MERES DE SIERO 0.29 0.74 0.81
0.42 0.09 GRADO 0.39 0.73 0.73
0.38 0.13 GENESTAZA 0.41 0.68 0.73
0.37 0.08 SOTO DE LA BARCA 0.34 0.69 0.78
0.42 0.09 PRESA DE LA BARCA 0.43 0.69 0.73
0.48 0.11 SOTO DE LOS INFANTES 0.22 0.44 0.56
0.45 0.11 CUEVAS DE ALTAMIRA 0.28 0.77 0.68

Table 1. The first two columns of the table are the climatological occurence probabilities of prec > 0mm/24h and prec >
10mm/24h, respectively; then, the name of the stations is shown. The last three columns show the RSA(Xi) values of the first
random realization for Näıve (N) and H2 model (the one corresponding to the graph of Fig. 6) corresponding to the case of one
year training length, and the RSA of the Näıve model trained with 10 years of data.
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