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Abstract 
 
Verification of temperature and precipitation seasonal forecasts from four different operational systems 
- European Centre for Medium-Range Weather Forecasts (ECMWF) system 4, Météo-France system 
3, UK Met Office system 3 and National Center for Environmental Prediction (NCEP) system version 2 
- for different seasons, lead times, variables and sub-regions over Southern Europe is computed 
based on available hindcasts. The impact of calibration and combination of seasonal hindcasts using 
different setups of a Bayesian scheme has also been discussed. Although results show relatively low 
skill as a consequence of the low predictability at seasonal scale over mid-latitudes, there is a 
noticeable consistency among models.  As expected over Southern Europe, scores for temperature 
are better than for precipitation. We also show and discuss windows of opportunity associated to 
certain seasons/variables/models/regions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This study has been done within the EUPORIAS (European Provision of Regional Impact Assessment 
on Seasonal and decadal timescale) project.  
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1. Introduction 

 
The chaotic features of the atmosphere limit the predictability of deterministic weather forecasts up to 
10-15 days. Beyond this range, the predictability of atmospheric conditions has only sense from a 
statistical point of view and therefore forecasts must be expressed in probabilistic terms (Murphy and 
Winkler, 1984). The main sources of uncertainty of forecasts at seasonal time scales come from the 
insufficient knowledge of initial conditions for the climate system and the lack of accuracy of climate 
models (Curry and Webster 2011, Knutti 2010, Slingo and Palmer 2011). The first source of 
uncertainty is explored using ensemble techniques based on independent forecasts from slightly 
different initial conditions (Gneiting and Raftery 2005; Palmer 2000). The second source of uncertainty 
is estimated, among other techniques, by combining different climate model integrations (Doblas-
Reyes et al. 2009). Some authors have proposed several approaches to combine and calibrate 
seasonal forecasts generated by seasonal forecasts based on different models and also on empirical 
algorithms (see, e.g., Palmer et al. 2004, Coelho et al. 2004, Stephenson et al. 2005). Predictability at 
seasonal time scale is highly dependent on particular atmospheric and oceanic modes of variability, 
regions, seasons and variables. Operational seasonal forecasts are frequently circumscribed to 
temperature and precipitation (Kirtman y Pirani 2008). The weak atmospheric predictability in mid-
latitudes, and in particular over the Mediterranean region, has given preference to simple and robust 
seasonal forecast based on terciles (Doblas-Reyes 2010). 
 
The main objective of this paper is to gain knowledge about the skill of the here considered models as 
a function of the season, variable and region in order to improve the operational seasonal forecast 
activities in the Mediterranean region. We evaluate for each region the skill of seasonal forecasts and 
identify windows of opportunity or circumstances with higher skill. These windows of opportunity may 
be linked to certain teleconnections, seasons, variables or specific forecast systems. The windows of 
opportunity can be produced by signals from several processes interacting constructively, but in many 
cases their reasons for such occurrence are still unclear. In this report we study and discuss the skill of 
state-of-the-art operational seasonal forecast models for different domains within the Mediterranean 
region, for different seasons and for different variables. For this particular study we have first 
considered direct outputs from the following four models: European Centre for Medium-Range 
Weather Forecasts (ECMWF) system 4, Météo-France system 3, UK Met Office system 3 and 
National Center for Environmental Prediction (NCEP) system version 2. Then, we have also applied 
the Bayesian calibration and combination method described by Stephenson et al. (2005) with different 
settings in an attempt to improve the scores of direct model outputs from individual seasonal 
forecasting systems.  
 
Section 2 describes data sources both from seasonal forecast models and observations. Calibration 
and combination methods are analyzed in Section 3. Verification scores here applied are summarized 
in Section 4. Results are presented in Section 5. Finally, conclusions and way forward are discussed 
in Section 6. 
 
 
 

2. Data 
 
The E-OBS gridded dataset from the EU-FP6 project ENSEMBLES (http://ensembles-
eu.metoffice.com) has been used for the observational data (Haylock et al. 2008). The E-OBS (version 
6.0) gridded data set provides daily surface temperature and precipitation at 0.5º x 0.5º latlon 
horizontal resolution (for the ENSEMBLES European domain) from 1950 up to now. The data set is 
based on daily station data available from the ECA&D website (http://www.ecad.eu) together with 
additional (restricted) data obtained by the STARDEX and ENSEMBLES projects. From the original 
data, three monthly averaged anomaly values of temperature and precipitation upscaled to 1º x 1º 
horizontal resolution were computed to verify seasonal models outputs. These derived data were also 
used by the Bayesian method applied for calibration and combination of seasonal forecasts (see 
Section 3). 
 
Hindcasts of the following seasonal coupled atmosphere-ocean models have been used for their 
verification at seasonal time scales:  
 

http://ensembles-eu.metoffice.com/
http://ensembles-eu.metoffice.com/
http://www.ecad.eu/
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The European Centre for Medium-Range Weather Forecasts (ECMWF) system 4 (S4) consists of 
Cy36r4 of the Integrated Forecast System (IFS) at TL255 resolution (80 km grid point resolution) 
coupled with the ORCA1 configuration of the Nucleus for European Modelling of the Ocean (NEMO). 
The IFS has 91 levels and includes the whole stratosphere. Ocean initial conditions come from an 
assimilation system based on an advanced multivariate variational analysis with bias adjustments. 
Atmosphere and land surface initial conditions come from a mixture of ERA Interim and ECMWF 
operations, and an offline run of the HTESSEL surface model (Kim et al. 2012, Molteni et al. 2011). 
The ensemble size is 15 members for the hindcast period 1981-2010. 
 
The Météo-France system 3 (MF3) consist of the Action de Recherche Petite Echelle Grande Echelle 
(ARPEGE) version 4 for the atmospheric component (Batté and Déqué 2011) coupled with ORCA, 
developed by LOCEAN, for the ocean model.  The ocean initial conditions are prepared by 
MERCATOR.  The atmospheric model has TL127 horizontal resolution with a Gaussian grid spacing 
of about 160 km and 91 levels with the stratosphere not fully resolved. The ensemble size is 11 
members for the hindcast period 1981-2010. 
 
The UK Met Office system 3 (UKMO3) has an atmospheric component with a spatial resolution of 2.5º 
x 3.75º grid and 85 vertical levels. The ocean model has a basic resolution of 1.25º, with meridian 
refinement to 0.3º at the equator and 75 vertical levels. Ocean initial conditions are taken from the Met 
Office ocean analysis system. The ensemble has 15 members for the hindcast period 1987-2008. 
 
The National Center for Environmental Prediction system version 2 (CFSv2) has an atmospheric 
component with a spatial resolution of 100 km and 64 vertical levels (Kim et al. 2012, Saha et al. 2013, 
Yuan et al. 2011).  The ocean component is the Geophysical Fluid Dynamics Laboratory Modular 
Ocean Model (MOM4) version 4 with horizontal resolution of 0.5º, refined at 0.25º between 10ºN and 
10ºS, and 40 vertical levels. Although the ensemble for the hindcast has 28 members, initialized at 
different days and hours, we have here only used the 12 more recent members. The hindcast period 
ranges between 1982 and 2010. 
 
 
 

3. Methodology 
 
The Forecast Assimilation (FA) is a Bayesian method which has been used to combine the four 
forecast systems here analyzed. The FA method has proved to be competitive against the Simple 
Multi-Model (SMM) method -where all single models are equally weighted- and other combination 
methods (Lage et al. 2013). The FA method calibrates and combines predictions from several sources 
with prior (historical) empirical information (Stephenson et al. 2005). A useful feature of FA is that it 
allows predicted patterns to be shifted spatially in order to correct for model biases in coupled model 
predictions. In other words, the procedure accounts for inter-grid point dependencies. The FA method 
is a consistent probabilistic approach which can be used for combining historical (climatological) 
information with dynamical model ensemble mean forecasts. The FA method, as any other Bayesian 
method, is firmly based on rigorous probability theory and so can provide well-calibrated probability 
forecasts.  
 
Different setups to apply the FA method are discussed in Annex I, depending on the application –or 
not- of cross-validation, the usage of standard values or anomalies values for temperature and 
precipitation in the maximum covariance analysis (MCA) method and the reference period taken for 
the computation of the prior function. According to this discussion, the FA3 setup is selected (using 
cross-validation, standard values and 1960-2010 as a reference period). All results shown in Section 5 
are computed using the FA3 configuration. Annex II discusses the retained number of modes by the 
MCA. 
 
With no access to a coupled model forecasts, M, the only possible probabilistic assessment about the 
observable variable, y, has to be based on the assumption that future values of y will behave like they 
did in the past. For example, the probability distribution of yi at some time ti can be estimated by using 
the climatological probability density function, p(yi), estimated from historical observations. In Bayesian 
theory, p(yi) is known as the prior distribution and encapsulates prior knowledge about likely possible 
values of yi which is usually known from past experience, in our case from climatology. A more 
informative prior could be also provided by some empirical model. However, when a particular model 
forecasts, M, are known for the future, it is then possible to update the prior p(yi) to obtain the 
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conditional posterior distribution p(yf|xf). In other words, this is the probability distribution of yi given 
that the forecast M(xj) is known, being xj the model state variables. Conditioning on forecasts helps to 
reduce the uncertainty about future values of yi (Jolliffe and Stephenson 2003, their chapter 9). The 
prior probability density when combined with a set of numerical weather predictions yields a 
conditional posterior distribution posterior probability. The posterior distribution p(yf|xf) is found from 
the prior p(yi) by making use of Bayes’ theorem. 
 

 
 

Fig. 1 - Conceptual Framework for forecasting. 
Fuente: Stephenson et al.(2005) 

 
In this paper we use as prior distribution the climatology from the E-OBS v6.0 observational database. 
As numerical forecasts, M, we have alternatively applied each of the four dynamical models here 
analyzed and also a combination equally weighted of the four models. In order to extract leading co-
varying modes from model predictions and observational data, the maximum covariance analysis has 
been applied (von Storch and Zwiers 1999).  
 
The anomalies of the different prediction systems, computed as the difference between the forecasted 
and climatological values for each system, are obtained by cross-validated forecasts on data not used 
in the estimation, i.e., the year to be forecast is removed from the data set. Cross-validation is also 
used for the calibration/combination FA method. We have used as common calibration period 1988-
2008 covered by the hindcasts of the four systems here analyzed. 
 
 
 

4. Verification 

 
Seasonal forecasts of temperature and precipitation obtained with the different forecasting systems 
here considered are verified using both deterministic and probabilistic skill scores. Statistical 
significance of all computed scores has been quantified by the p-value estimated using a 
bootstrapping non-parametric method (Wilks 2006). 
 
The correlation between the predicted and the observed mean value of anomalies over the different 
land domains within the Mediterranean region (see Fig.2) is the only deterministic skill score computed 
both for temperature and precipitation. The score was computed for 12 different three-month periods 
and for lead times 1, 2 and 3. 
 
From a probabilistic point of view, the following skill scores have been also computed for the same 
variables (temperature and precipitation), for 12 different three-month periods and for lead times 1, 2 
and 3: the Ranked Probability Skill Score (RPSS) for terciles, and the Relative Operating 
Characteristic (ROC) area and the Brier Skill Score (BSS) for two events (values above/below the 
upper/lower tercile). A complete definition of these scores can be found in Wilks (2006). 
 
The Ranked Probability Skill Score (RPSS) is a generalization of Ranked Probability Score (RPS) 
based on a reference forecasting system. The RPS averages squared “error” in the cumulative 
probabilistic forecasts. Positive values of RPSS indicate more skill than the reference system, usually 
the climatology.  
 
The ROC curves measure discrimination and skill. If the category of interest is above-normal, the 
score based on the ROC area indicates the probability of successfully discriminating above-normal 
observations from normal and below-normal observations. The ROC area ranges from 0% to 100%, 
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with a score of 50% representing no skill, 100% indicating perfect discrimination, and 0% indicating 
perfectly bad discrimination. It is important to stress that ROC curves are measuring only the 
discrimination ability between two possible results, but it is not informative about reliability as it is not 
sensitive to bias.  
 
The Brier Score (BS) is the most common verification method for probabilistic forecasts, as it, has a 
mathematical structure similar to the Mean Square Error (MSE). BS measures the difference between 
the forecast probability of an event (p) and its occurrence (o), expressed as 0 or 1, depending on 
whether the event has occurred or not. As with RMSE, the BS is negatively orientated, i.e. the lower, 
the “better”. The Brier Skill Score (BSS) is conventionally defined as the relative probability score 
compared with the probability score of a reference forecast. 
 
All the ensemble members from 1988 to 2008 are taken into account in order to compute the lower 
and upper terciles of the hindcasts. The terciles of the observation data are also computed over the 
same period. We assume a normal distribution function to calculate terciles of the analysed Bayesian 
methods. 

 
Fig. 2 – The selected four land domains over the 

Mediterranean region  

 
 
 

5. Results 
 
The four skill scores described in the previous section have been calculated taking into account all grid 
points on each selected Southern European region (see Fig. 3 to 6). The calculated value of each 
score over each selected domain is displayed using tables for anomalies of temperature and 
precipitation, for 12 different three-month periods and for lead-times 1, 2 and 3 (Table 1 to 24).  
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Fig. 3. Grid points over the Iberian Peninsula domain 

 
 

Fig. 4. Grid points over the France domain 
 

 

 
Fig. 6. Grid points over the Balkan domain 

 
 
 

 
Fig. 5. Grid points over the  Italy domain 

 

 
 
 
Tables 1, 2, 3 and 4 show the correlation coefficients between observations and seasonal forecasts in 
the four selected domains (Fig. 3, 4, 5 and 6), The correlation coefficients are referred to the 
precipitation and 2m temperature anomalies, computed for successive three-month periods and for 
lead times 1, 2 y 3. Tables 1-4 show results from: 1) direct model output from each of the four models 
here studied; 2) individual application to each model of the calibration and combination algorithm with 
FA3 configuration (see Annex I); and 3) combined application to the same algorithm to all four models. 
Temperature shows significant values (p-value 0.05) higher than 0.3 mainly centered in summer 
period and beginning of autumn for the Iberia and France domains. This window of opportunity is 
mostly common to all models here considered. The Italy and Balkan domains show a shift of this 
window towards spring and summer seasons. Apart from this clearly noticeable window, significant 
values appear only for certain models (UKMO3 for Iberia or MF3 for the rest of domains) and mainly 
restricted to certain months during autumn and winter. When the calibration and combination algorithm 
is applied, it is noticeable a slight improvement of the scores -although not general- which coincides 
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with models and periods showing higher correlation. It is important to underline the fact that the 
application of the algorithm combining the four models here considered do not produce better scores 
than the best scored model. This suggests that the best strategy would probably consist of eliminating 
the worst model(s) before the combined application of FA to several models. Precipitation shows 
generally lower skill than temperature and frequently non-significant values. In this last case, FA 
hardly improves skill. One should stress the high skill showed in JJA for lead-time 2 over Iberia mainly 
coming from the UKMO3 model. This result is not easily explained as scores for lead-times 1 and 3 do 
not behave accordingly. 
 
Comparison of correlation coefficients for different time horizons show some noticeable results. Firstly, 
longer lead-times are not always associated with skill degradation. Focusing, e.g., in the Iberian 
domain, the narrow winter window of opportunity for temperature associated to the UKMO3 model 
occurring in DJF for lead-time 1 moves to JFM for lead-time 2 and to FMA for lead-time 3. This 
behavior suggest a strong impact of initial conditions for the month of November. Secondly, certain 
skill barriers, linked to specific periods, either move to the right of Tables 1-4 when lead-time is 
increased or lessen or even disappear when previous initial conditions with higher predictability are 
used. The FMA temperature skill barrier for lead-time 2 shifts one month for lead-time 3. It is also 
worthwhile to point out that benefits associated with FA depends highly on each specific model. E.g., 
the application of FA to the UKMO3 model has always positive impact in terms of correlation 
coefficient both for all lead-times and three monthly periods. This fact has no correspondence with 
other models for the Iberian domain. However, when FA is applied over other domains no single 
model is able to improve skill, although there are differences among models and domains. For 
example, FA successfully improves scores when applied to MF3 over Italy for temperature, whereas 
FA deteriorates scores over the Balkan for all models. This suggests the need of different strategies or 
calibration setups for each model and for each domain. Probably some models have more potential for 
improvement through calibration and combination whereas others are already much optimized and 
their room for improvement is very limited, always depending on particular domains. 
 
Tables 5, 6, 7 and 8 show the Ranked Probability Skill Score (RPSS) for accumulated precipitation 
and 2m temperature over the four domains here considered (Figs. 3 - 6).  RPSS is not a symmetric 
skill score. It ranges from 1 (perfect forecast) to - ∞. Negative values indicate that the forecast is less 
accurate than climatology. Consequently, we focus only on positive values (green and blue in tables). 
Analogously to the correlation coefficient, visual inspection shows a general lack of skill for 
precipitation, whereas for temperature slight differences appear – mostly non-significant- among 
models and domains. Some of the features described for the correlation coefficient are also valid for 
RPSS, such as the occurrence of summer windows of opportunity for temperature with stronger 
dependency now on models and the appearance of a noticeable shifting towards spring over the most 
eastern domains. 
 
Tables 9, 10, 11 and 12 show lower tercile ROC area for accumulated precipitation and 2m 
temperature over the four domains (Figs. 3 - 6).  Let’s recall that this skill score measures the ability to 
discriminate of a forecast system. It ranges from 0 to 1 with values lower than 0.5 indicating no skill. 
Temperature seasonal forecasts for lead-time 1 show again the highest significant values (>0.70) 
during the summer season and late/early spring/autumn depending on the considered domain. 
Generally, skill is highest over Iberia and lowest over Balkans. In the winter period (DJF-JFM), skill of 
the UKMO3 model over Iberia and skill of the MF3 model for the rest of domains are noteworthy. 
Generally speaking, there is not a clear improvement when FA3 is applied, although again some 
models over certain domains show some improvement (e.g., UK over Iberia and Balkans, MF3 over 
France and Italy), whereas others (e.g., S4 over Balkans) practically does not show improvement in 
any case. Similarly to other scores, shifting of barriers or skill peaks associated to specific periods are 
also noticeable when lead-time increases. Although precipitation shows generally less skill than 
temperature in terms of lower tercile ROC area, it reaches significant values higher than 0.5 for one of 
the models (UKMO3) with lead-time 1 over Iberia. Again FA3 does not generally improve skill, being 
its impact much dependent on model and season. 
 
 
Tables 13, 14, 15 and 16 show upper tercile ROC area for accumulated precipitation and 2m 
temperature over the four domains (Figs. 3 - 6). Comparing against lower tercile ROC area, the 
improvement for temperature and lead-time 1 over Balkans is worth to mention, whereas it is not 
noticeable for other domains. In coincidence with other scores, FA3 does not generally improve skill 
except in particular cases. 
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Tables 17 - 20 show lower tercile Brier Skill Score (BSS), and Tables 21 - 24 the corresponding for 
upper tercile BSS for accumulated precipitation and 2m temperature over the four domains (Figs. 3 - 
6). Similarly to RPSS, the BSS is neither symmetric. It ranges from 1 (perfect forecast) to - ∞. Negative 
values indicate that the forecast is less accurate than climatology. Results, as expected, are rather 
similar to those obtained from RPSS. Skill, as measured by BSS, is slightly higher for temperature 
than for precipitation. It also appears the summer window of opportunity, which extends from April to 
October over France and Iberia, whereas it shifts toward spring (March-August) for lead-time 1 over 
Italy and Balkans. Nevertheless, there are still noticeable differences among models. With the 
exception of this window, positive values appear only scattered for some models and for some 
winter/autumn months. It is also noticeable for lead-time1 the occurrence of more positive values for 
the lower tercile than for the upper tercile over Iberia and France. Over Italy both lower and upper 
terciles BSS positive values appear with approximately the same frequency, and over Balkans positive 
values dominates for upper tercile. 
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Table 1. Regional correlation coefficients between observations and forecasts computed for the anomaly 
values of temperature and total precipitation, for the 12 different three-month periods and for the lead-time 1, 
2 and 3 over IBERIAN domain. The three-month periods for the seasonal forecasts are done, moved one by 
one for each column in the table, are shown in the X-axis. The direct output of the different models (S4, MF3, 
UKMO3 and CFSv2) and the FA3 algorithm outputs are represented in the Y-axis (see text for their 
description). 
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Table 2. The same as Table 1, but over the FRANCE domain. 
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Table 3. The same as Table 1, but over the ITALY domain. 
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Table 4. The same as Table 1, but over BALKANS domain. 
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Table 5. The same as Table 1, but for the Ranked Probability Skill Score. 
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Table 6. The same as Table 1, but for the Ranked Probability Skill Score over FRANCE domain. 
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Table 7. The same as Table 1, but for the Ranked Probability Skill Score over ITALY domain. 
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Table 8. The same as Table 1, but for the Ranked Probability Skill Score over BALKANS domain. 
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Table 9. The same as Table 1, but for the lower tercile ROC Area. 
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Table 10. The same as Table 1, but for the lower tercile ROC Area over FRANCE domain. 
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Table 11. The same as Table 1, but for the lower tercile ROC Area over ITALY domain. 
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Table 12. The same as Table 1, but for the lower tercile ROC Area over BALKANS domain. 
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Table 13. The same as Table 1, but for the upper tercile ROC Area. 
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Table 14. The same as Table 1, but for the upper tercile ROC Area over FRANCE domain. 
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Table 15. The same as Table 1, but for the upper tercile ROC Area over ITALY domain. 
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Table 16. The same as Table 1, but for the upper tercile ROC Area over BALKANS domain. 
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Table 17.  The same as Table 1, but for the lower tercile Brier Skill Score. 
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Table 18. The same as Table 1, but for the lower tercile Brier Skill Score over FRANCE domain. 
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Table 19. The same as Table 1, but for the lower tercile Brier Skill Score over ITALY domain. 
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Table 20. The same as Table 1, but for the lower tercile Brier Skill Score over BALKANS domain. 
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Table 21. The same as Table 1, but for the upper tercile Brier Skill Score. 
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Table 22. The same as Table 1, but for the upper tercile Brier Skill Score over FRANCE domain. 
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Table 23. The same as Table 1, but for the upper tercile Brier Skill Score over ITALY domain. 
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Table 24. The same as Table 1, but for the upper tercile Brier Skill Score over BALKANS domain. 
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6. Conclusions 
 
In general, verification results show, as expected, low skill at seasonal timescale consequence of the 
low predictability over mid-latitude regions. However, we can still draw the following conclusions: 
 
 

 Better skill in general for temperature than for precipitation, as expected over mid-latitude 
regions. 

 
 Relative consistency among models which allows the identification of some windows of 

opportunity for seasonal forecasts associated to certain seasons, variables and in some cases 
limited to certain models. Summer appears as a window of opportunity for temperature, 
possibly linked to the general trend associated to the warming of the climate system. 

 
 The window of opportunity for temperature is centered around summer and early autumn over 

the Iberian Peninsula and France domains, whereas it shifts towards spring (MAM and JJA) 
over the most easterly domains (Italy and Balkans)  

 
 Some scores show more skill than others, e.g., the ROC area skill score -providing an 

indication of a forecasts system discrimination capacity- tends to have more skill (relative to 
climatology) than other scores which explore other aspects of forecasts. 

 
 Certain features related with the different quality of models for different seasons are also 

detected by the verification scores. For example, UKMO3 and MF3 models tend to show more 
skill in winter time than the rest of the models, whereas S4 shows the highest skill when 
averaged over all seasons. 

 
 Existence of some barriers or peaks of skill over certain domains, suggesting initial conditions 

with different predictability. These barriers (peaks) move to the right in the verification tables 
as lead time increases clearly indicating initial conditions with less (more) predictability. 
Consequently, higher lead times do not automatically are associated with degradation in terms 
of skill. 

 
 Benefits from the application of the calibration and combination FA algorithm depend highly on 

each specific model. Some models seem to have different potential of improvement when the 
FA algorithm is applied. This may lead in the future to consider different strategies for 
calibrating and combining each model and to reconsider the application of the same setup 
(FA3 was selected for this study) for all models.   
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ANNEX I  
  
Description of different setups to apply the FA method 
 
Different setups to apply the Bayesian method FA have been explored in order to improve the 
seasonal forecast quality: 
 

1. FA1 Configuration: 
 

 Anomalies of averaged three month values are used for applying the maximum 
covariance analysis (MCA). 

 The prior function is computing over the common period the hindcasts are available: 
1988-2008. 

 
 

2. FA2 Configuration: 
 

 Averaged three month standardized values are used for applying the maximum 
covariance analysis (MCA). 

 The prior function is computing over the common period the hindcasts are available: 
1988-2008. 

 
 

3. FA3 Configuration: 
 

 Averaged three month standardized values are used for applying the maximum 
covariance analysis (MCA). 

 The prior function is computing over the extended period: 1960-2010. 
 

 
4. FA4 Configuration: 

 
 Anomalies of averaged three month values are used for applying the maximum 

covariance analysis (MCA). 
 The prior function is computing over the extended period: 1960-2010. 

 
 
 
The anomalies and standardized values of the different prediction systems, computed as the 
difference between the forecasted and climatological values for each system, are obtained by cross-
validated forecasts on data not used in the estimation, i.e., the year to be forecast is removed from the 
data set. Cross-validation method is also applied to compute the anomalies of observation data and 
for the four calibration/combination FA methods described above. 
 
 
 
Assessment of the four considered configurations to apply the FA method. 
 
The correlation between the predicted and the observed mean value of anomalies over the Iberian 
domain for FA1 to FA4 configurations, for temperature and precipitation, for the 12 different three-
month periods, for lead times 1, 2 and 3 has been computed in order to select which method is the 
best to improve the quality of the forecast systems. Analysing the results (see Table 25 to 28) the FA3 
setup has been selected to applied to the full study, although the FA4 configuration shows very similar 
values. 
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Table 25. Regional correlation coefficients between observations and forecasts (four different FA setups (FA1, 
FA2, FA3 and FA4 applied only to the S4 system) computed for temperature and precipitation anomalies for 12 
different three-month periods and for lead-times 1, 2 and 3 over the Iberian domain. 
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Tabla 26. The same as Table 25, but applying the FA method to the MF3 forecast system. 
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Tabla 27. The same as Table 25, but applying the FA method to the UKMO3 forecast system. 
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Tabla 28. The same as Table 25, but applying the FA method to the CFSv2 forecast system. 
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 ANNEX II  
 
Number of modes by the MCA. 
 
The explained squared covariance fractions (%) has been used to choose the optimal number of 
modes retained for MCA when the FA method is applied.  Fig. 7 shows squared covariance fractions 
for three monthly averaged standardized values of temperature from the S4 system. Similar results 
have been obtained for precipitation and for the other forecast systems. Visual inspection allows to 
choose 3 modes for the MCA 
 

 

   

   

   

   
 
Figure 7. Squared covariance fractions (%) as a function of the retained number of modes for MCA computed for three monthly 
averaged standardized values of temperature from the S4. Different graphics are referred to 12 successive three monthly 
periods for the Iberian Peninsula domain and for lead-time 1. 
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